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ABSTRACT

It is shown, by following the applied derivation, that the general applied equations for stresses in the
vicinity of the crack tip, are not right and have to be corrected, based on the ultimate stress condition
of the tangential hydrostatic stress in the crack wall. The right equations show the indefinite high,
linear-elastic, full hydrostatic failure stress, necessary to break molecular bonds at the crack tip and
stresses therefore have to be given in the, first order, stress intensity form. Main error are:

- that the distance r, of the focus to the crack border( in fig. 2.2), which is of lower order for flat
cracks, is regarded to be a free first order variable outside the crack border wherefore the equations
do not apply.

- that the stress equations for stresses in solid material are applied, thus not on the crack border,

- that lower order small coordinate values and distances are compared with first order polar
coordinate values. The correction leads to the mixed mode failure criterion, in first order stress

intensities, of indefinitely high full-hydrostatic stresses.
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and orthotropic materials, like wood, acting as a reinforced isotropic material.
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1. INTRODUCTION

In [1], the first, and still unique, exact analytical fracture mechanics derivation is given, of the critical
stress state of an, in-plane, loaded plate with an elliptic hole in the middle, based on the solution of the
strain differential equations in curvilinear elliptic coordinates. Applied is an always possible infinite
series solution of differential equations, which did not lead to a new function, but, after satisfying
general and boundary conditions, resulted in expressions in the form of existing transcendental
functions (sin, cos, sinh, cosh, exp) which therefore represent the exact solution for the flat, thus sharp,

crack problem. Determining for the strength is the boundary value solution of the determining
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tangential stress along the edge of the elliptic hole, which provides the mixed I-11 mode fracture
criterion. It appears that also Stevenson’s [2] complex potentials solution of the Airy stress function,
according to complex variable theory, discussed and applied, e.g. in [3], is based on this infinite series
solution of Inglis [1], thus leading indirectly to an exact infinite series solution of the Airy stress
function, because the same critical tangential stress equation along the crack border is obtained. In [3],
the proof of this connection is given by the explicit derivation of the Griffith mixed I-11-mode failure
criterion, by using the determining Stevenson’s potentials, what leads to the same result as Griffith’s
30 years older, Inglis-series based, solution. This Stevenson’s potentials result appears to be copied by
all textbooks, but is followed partially, thus incorrectly (see [4], [5]). Correction thus always is
necessary. A fundamental extension is given for the critical state, e.g. in [4], [5], by the proof, that the
exact equations in elliptical coordinates, show the full-hydrostatic critical stress state at the crack tip at
any critical load combination. Thus for sharp cracks, the highest critical stress occurs at the crack tip
and after curved shear line (slip line) formation, (as shown e.g. by digital image correlation technique),
a full-hydrostatic stress field, occurs at the crack tip, instead of Irwin’s plastic zone. It is shown in [4],
that this high stress solution is a general property, necessary to break atomic bonds at fracture. The
extension of this isotropic material fracture to fracture limit analysis of orthotropic materials like
wood, (which thus behaves as reinforced material with an isotropic matrix) is e.g. given in [4]. It is
also shown in [4], that the general applied fracture mechanics textbook crack tip boundary value stress
problem solution of [6], is identical to the sum of the exact solutions of pure normal stress loading
alone, and of pure shear stress loading alone, although these two solutions exclude each other and
cannot apply at the same time. Evidently this, for stress and for displacements incompatible result is
against the existing hydrostatic “mixed mode” failure criterion, which necessarily follows as solution
of the crack boundary value problem. Further, by an improper small variables transformation, the
Textbooks pure mode |1 solution is shown to be not correct. This all delivers, a wrong, incompatible,
equilibrium system, which does not satisfy the crack boundary conditions and the failure criterion,
thus should be omitted. As correction, the right exact limit analysis solution is given, e.g. in [4],
which, as such, provides the derivation of “mixed I-ll-mode” fracture criterion, which, as only
equation, is verified, with sufficient precision, by empirical research. (see Table I, eq. 3). The
necessary limit analysis approach for failure, as exact calculation method, provides the necessary
linear elastic analysis up to the ultimate state (as occurs at reloading after unloading from the ultimate
state). The tremendous high hydrostatic stress thus is a linear elastic stress far above the common
plastic flow level. The fully empirical, so called, non-linear fracture mechanics, thus is a problem. Non
linear processes in structural materials only can be described and analyzed by molecular deformation
kinetics, thus with the non-linear chemical and physical reaction rate equations, (based on Bolzmann
statistics) acting as non-linear dashpot and linear elastic spring constants of the applied Maxwell
elements (see [7]). This is not possible with non-linear elasticity or deformation theory of plasticity.

Stress is linear elastic, only and fully determined by linear elastic strain, thus by the distance between
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local material molecules.

2. PROOF OF GENERAL APPLIED DISASTROUS MISTAKES AT THE
NEAR CRACK TIP, STRESS ANALYSIS

Because the same mathematical analysis is applied in all investigations, now and in the past, about the
determining stresses near the crack tip, the catastrophic errors in this method are not noticed. One
main mistake is, that the small scale elliptical coordinate variables and distances, which are several
orders smaller than the crack length 2a, are wrongly compared with first order polar variables at the
coordinate transition. This produces an additional apparent and incomplete first order load effect.

The exact mathematical fracture mechanics approach [3] and the more empirical [6] are generally
referenced and followed since 1969, the year of the first prints of [3] and [6]. The exact equations, for
the mixed mode strength determining tangential stress at the crack wall boundary, applied by Griffith
for isotropic materials and in [8] for orthotropic materials, are known in elliptic coordinates, based on
the infinite row solution of the displacements differential equations of Inglis, or by the related,
Stevenson’s [2] complex potentials solution of the Airy stress function. Because of failure, by the
invariant full hydrostatic stress state, shown in [4] and [5], the equations are also directly known in
polar and cartesian coordinates. This strength approach is not followed in Textbooks. Not strength
relations are given, but only the finite declared, “infinite” high stresses near a, near zero, crack width
of a, near zero flat, crack tip singularity. The description of the influence of small distances to the flat
crack tip are regarded the best, by applying the confocal coordinate system of fig. 2.2. For the perfect
flat crack the focus shifts to the crack tip, thus, in the limit, to a near zero distance. However, the
derived stress equations are not applied to describe the ultimate higher order stress behavior near the
crack tip, but are wrongly extrapolated to far distance stress equations, outside the crack border, and
are thus unrelated, meaningless equations. The used mathematical equations only apply along the
crack border. A main objection further is, that this, in fracture mechanics accepted, solution for
combined stresses near the crack tip, only applies for stresses in solid material and is not right for the
strength determining stress at the crack tip wall and thus cannot be applied in fracture mechanics. The
proof of this, is given in the following, by comment on the followed derivation in [3].

The exact equations, based on the infinite series solution of the strain differential equations as basis for
the stress potentials estimation of the Airy stress function solution, are in elliptical coordinates, what
needs, (for applicability of the equations), transformation into Cartesian or polar coordinates.
Therefore, first the relations between the elliptic and polar and cartesian coordinates are given, based
on the confocal coordinate system of fig. 2.2, where the origin of the coordinate system is at a focus of
the ellipse. Further, a to be corrected error is, that the, in the central coordinate system of Fig. 2.1,

applied elliptic stress equations are based on application of the Maugis adaption of the Stevenson
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potentials, for stresses in solid material, applied far outside the crack border. Thus they don’t represent
the determining stresses, which occur only along the boundary of the crack hole near the crack tip, as
also is shown by the derivation of the exact mixed mode failure criterion in the following.

According to the derivation, given in [3] chapter 8.9, applies the following:

In Fig.2.1, the elliptic crack & = & is given in a central (X,y) coordinate system. In Fig. 2.2,

a related Cartesian (X,Y) and a polar (r,0) coordinate systems is given, centered at a focal point.

A Y
=1,

Fig. 2.1. Elliptic hole and elliptic coordinates Fig. 2.2. Confocal polar coordinates for elliptic
- to polar coordinate transformation

For a point, in Fig. 2.2, near the elliptic crack tip of &= & , with coordinates:

x=ccosh(&)cos(n7), y=csinh(&)sin(n), (2.1)
applies, for small values of variable z = & or 5 near the crack tip, that:

cosh(z) = 14+2%/2; cos(z) = 1- z%/2; sinh(z) = z; sin(z) =~ z,

as first expanded of a row expansions of the functions in z. Thus (2.1) becomes:
x=c(l+E&H42)(1-n?l2) =c(L+ &2 -512); y=cn. (2.17)
With focus x = ¢, of a flat ellipse, as new origin for Cartesian coordinates X, Y, (see Fig. 2.2),

applies, because of the small values of the elliptical coordinates & and # near the crack tip, that:

X=x-c=c(&-7n°)/2, Y=y=c&n — (2.2)
r=yX?+Y?, X=rcos(d), Y =rsin(d), (2.3)
in Cartesian coordinates. And it follows that:

12
g n?=2(X2+Y?) " =2r/c (2.4)
in elliptical coordinates. From (2.2) also follows:

X2=(§4—2§2772+774)§; Y2 =222 X2+Y2:(§4+2§2772+774)§=§(§2+772)2:r2
4 4 4

X2 2(52_,72)2% —(rcos6)’ —>(§2+772):%; _)(52_772)2%5(9)
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Thus for the elliptic coordinates applies:
£=(r/c)”*(1+cos(0))” =(2r/c)cos(0/2)=(pIc)" cos(&) z(,o/c)ll2 (1-6°12) (2.5)

n=(ric)” (l—cos(@))l/2 =(2r/c)*sin(012)=(p/c)"*sin(5) z(p/c)uzé (2.6)
The real cyclic parameter, covering the whole range between 0 and = is not 6, but the surface curve
normal value ¢ = 6/2 (see Fig. b) and the appurtenant radius is not r, but p = 2r, which is the radius of
the crack tip (r is the distance of the nearest focus to the crack tip). A plot of the stress, dependent of
p, should show every ¢ =z the same repeating plot, because the loading situation is identical every «t
degrees. This means that the Textbook stress equations give shifted values. When 6 = &t is inserted the
stress value of ¢ =m/2 is obtained. These shifted, incomplete values, are in the Textbooks and
reformulation with p and d, instead of r and @, thus is needed.

The angle 4, in fig. b, follows from:
e =w'(¢)/ @'($)=(sinh(£+in))/ (sinh(£—in))=(E+in)/ (&-in)=€" 2.7)
or: 0=0/2 (2.8)

The values ¢ and 7 of eq.(2.5) and (2.6) are inserted in next eq.(2.9) to eq.(2.11), for stresses in solid
material, near the crack tip, to get the required elliptical coordinate equations in polar coordinates.
However this chosen insertion is not close to the crack tip, but applies everywhere in the field, because
it is stated and regarded, that it applies at any value of & and r.

For values close to the crack tip, the first row expanded of sin(d) and cos(d) apply. Thus:

sin(d)=6 =0, and cos(d) = 1-8%/2 =1, (2.17)

the same, as is applied for the functional related elliptical variables near the tip, given by eg.(2.1’).
Further, for the Textbook insertion,

wrongly both potentials are regarded, based on the Maugis modification (see [3]), which apply for

solid material failure and not for fracture of loaded boundary walls of an open crack, thus don’t

apply for fracture mechanics crack extension. This will be corrected later. For the discussion of the
consequences of this application, the applied Maugis equations have to be regarded in the following.
This leads to:

o; +0, = pcos(2f8) + ap| (1-cos(2/3))sinh (2&) —sin (2/3)sin(27) | (2.9)

o —0o, =apcosh(2&)cos(2(n - B))+a” p{(l— cos(2/3))(cos(277)—1)sinh (25)} +

+a2p{—cosh(2§)cos(2,8)+cos(2(77—ﬂ))—cosh(2§)sin(2ﬁ)sin(2n)} (2.10)

7z, =1 Pasinh(2£)sin(2(B-n)) +
+1 pa® {sinh(2§)sin(2ﬂ)(cos(2n)—1) +(1-cos(28))(cosh (2¢£) —1)sin (277)} (2.11)
with: « =(cosh(2§)—cos(277))_l= 0-5(52 *‘772)7l =c/4r (2.12)
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Thus equations (2.9) to (2.11), in the central coordinate system (of Fig. 2.1), of a flat elliptical crack
& =0, loaded by an uniaxial stress p at infinity inclined at $ to the plane of the crack, followed directly
by differentiation of both Stevenson potentials (see [3] for this and the equations).

The insert of & and 7 into eq.(2.9), for the flat crack &, =0, for loading by stress p at infinity at an

angle g to the crack, using small values properties of & and n, near the tip, gives:
O, +0,=0,+0,= pcos(2ﬁ)+ap[(l—cos(2ﬁ))sinh(25)—sin(2ﬂ)sin(277)] =
= pcos(28)+apl (1-cos(28))(2£) - (2n)sin(2) | =
= pcos(2/8)+ p(c/2r)*[ (1-cos(23))cos(6/2)-sin(2/3)sin(6/2)] (2.9")

The first term, p-cos(24), in the last equation, is constant, but is negligible with respect to the term in
(r)~Y2. This means that V(c/r) is of a higher order and thus r is two orders smaller than half the crack
length c. This also follows from the coordinate values & and # which apply near the crack tip, by taking
sinh(2¢) = 2 &and sin(2y) = 2, which next are regarded to be equal to: ¢ = (r/c)¥cos(0/2) and 5 =
(r/c)¥2sin(0/2). Thus r/c is of lower order with respect to the lower order values ¢ and 7 , which are,
when being the lowest value in an equation, taken to be zero, (& = 0, = 0) thus is extremely small.

The stress equations apply only on the crack border: & = &. Thus the determining value of r is the

distance of the focus to a crack tip border point. For sharp cracks this distance is of lower order and

the focus is approximately on the crack tip (as is applied in [6]- A2).

This is not regarded in applications, and in Textbooks, where r is regarded to be a free variable and

r/c, is always taken to be of order one, while in the derivation r is several orders smaller than half

the crack length c. Regarded high r/c values thus represent points, far outside the applying

mathematical equation, although they only apply at the crack border & = &. This delivers multiple

order mistakes.

For the determining stress at the crack tip, applies, that # =0 and 8 =0, which are coordinate values
of the crack tip. In the derivation also & = 0 is applied, so that then: p-cos(25) in eq.(p.9’) indeed is
several orders lower and has to be omitted from the equations (as always done).

This means that the crack is a closed slit, thus the crack width b = 0. Then also V(ro) in eq.(2.5):

Xo = (2ro/c)*? has to be taken to be zero. This means that the always presented stress equations in
appendix 2 of [6] and equations (8.246) to (8.275) of [3], all with r, in the denominator, show not
measurable undetermined high (thus hydrostatic!) stresses, which thus are all mutual equal, and thus
are in the given form meaningless (infinite) and should be rewritten in stress intensities. Then is, for

instance eq.(8.252) to eq.(8.254) of [3], for pure mode | loading, when r — 0, and thus 8 — 0:

o =0 ST 2r -cos(612) (1+sm 9/2) (al Jerar)—e [3] (8.252)
oy =0 Ncl2r-cos®(612)~ Ilm(al\/CIZr) [3] (8.253)
79 =0 \cl2r -sin(612)cos? (6/2) =0 [3] (8.254)
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The stress state thus is hydrostatic and is even triaxial full-hydrostatic because:
0z = Vorr + Vogo = 6 = 69 bDecause v = 0.5 of no volume change.
This agrees with the exact estimation in [4]. However, there remains yet one error in the equations:

By applying this analysis, based on both stress potentials, as done by Maugais, [3], (what applies for

stresses in solid material), wrongly equal critical mode | and |1 stress intensities are obtained in all
Textbooks.

The analysis thus is not right for failure near the crack tip and this only can be corrected by regarding
the, potential for the fracture strength determining tangential stress, in the crack wall. The derivation
of the mixed I-11 mode failure equation, discussed in Section 3 below, shows that then the right mode |
stress intensity for tension and right mode 11 stress intensity for shear stress loading are obtained in the
equation.

Finally, after following the same Textbooks variable replacement procedure, as done for eq.(2.9) and
solving the equations, it is found that:

(8r/(cp?))” o, =sin(0/2)-(1-3sin? (01 2))sin(28) + 2c05(0/ 2)-(L+sin? (/2))sin* (B)  (2.14)
(8r/(cp?))” o, =-3sin(012)-cos (01 2)-sin(28) + 2c0s* (01 2) sin? ( B) (2.15)

(8r/(cp?))” 7,, = co5(012)-(3c0s2 (81 2) ~2)-sin(28) + 2c0s? (01 2) sin (01 2) sin*(B)  (2.16)

which are the equations (8.246) to (8.248) of [3], of the elliptic to polar coordinate transformation.
(applied in all Textbooks and thus also, literally present in [6] appendix 2 as shown by the derivation
in [4], (eq.(6.29) to eq.(6.44)).

Differentiation of eq.(2.15) with respect to 6 to find the strength determining value of the tangential

stress ay from d(o)/d0 = 0, delivers, that 8 = =t (trivial) or that & follows from:
tan(/3)sin() +3cos(4) =1 (2.17)

and it follows from eq.(2.16) that z.v = 0 when eq.(2.17) is satisfied. Thus gy and o, then are the
principal stresses, of which o start as the highest.

For fracture near the crack tip: 8 — 0, eq.(2.17), only applies when g = = /2, thus only for mode I,

thus only for tension perpendicular to the crack direction and not for shear loading. Due to the high
induced stress at the crack tip, the full hydrostatic stress state occurs, after flow of o, to g¢. The
contraction coefficient v = 0.5 applies for both, plastic flow and full hydrostatic stress. Thus flow of
the maximal stress, as mode | strength condition, delivers the full hydrostatic stress state after stress
redistribution to 3 equal principal stresses, as applies due to the high peak stress due to the strong

curvature (small r) at the tip of a flat crack. Thus Irwin’s flow near the crack tip can be postulated to

be equal to stress redistribution, up to the occurring full-hydrostatic stress state [4], with linear

elastic principal stresses far above the plastic flow stress.

The fact that the hydrostatic stress at the crack tip, only occurs for mode 1 in the Textbook equations,



Delft Wood Science Foundation Publication Series 2022 -1 - ISSN 1871-675X

and not for shear loading, what is against the exact equations in elliptical coordinates, shows that the
Textbook elliptical — polar coordinate transformations equations: (2.14) to (2.16), are not right in this
respect. To control, whether the given mode | values, which are right at the crack tip, (by showing

always the hydrostatic ultimate stress state), also are right, outside this crack tip region, the equations

for pure mode I, thus for g = z/2, are regarded next. For that case, equations (2.14) to (2.16) become:

(2r/c)” o, = pcos(0/2)-(1+sin*(0/2)) (2.18)
(2r/c)” o, = pcos®(012)- (2.19)
(2r/c)?z,, = pcos?(012)sin(612) (2.20)

In these equations is r = p/2, where p is the radius of the crack tip and ¢ = /2, the appurtenant elliptic
rotation angle (see Fig. b). The principal stresses follow from:

Jei2r - peos(612)-(1sin(6/2)), thus: o/ p-p-cos(8)-(1+sin(5)) (2.21)

A plot of the mean principal stress value against , gives the mean load plot. According to eq.(2.21)
this plot follows the form: P-cos(d), due to the cos(o) term in the first order variable change eq.(2.5).
Thus shows +P at 6 = 0 and — P at J = z, and next +P at 6 = 2z. The repetition of the plot is at every: ¢
= 2x, instead of the same load repetition every 6 = z, (as applies, in the right way, for the plot of pure
mode Il loading curve). The two principal stresses are equal at o = 0, showing the hydrostatic stress
state at the crack tip. At increasing ¢, one principal stress increases while the other decreases, up to ¢
~ /4. This is the contribution of the opposite sin(d) terms in eq.(2.21). Next, both principal stresses
decrease to zero at 0 = #/2, (in accordance with cos(z/2) = 0). Thus then there is a zero total loading.
Next, both become negative, one slowly and the other more strongly down to § = 3z/4. Then, one still
decreases further, while and the other increases, down and up to 6 = z. Here both principal stresses are
negative and equal and there thus is a negative hydrostatic stress state prediction. Then from 6 =z to 0
= 2z, the same picture applies as going back from ¢ =z to 6 = 0. There thus is a precise asymmetric
mean loading picture, between ¢ = 0 and ¢ = , due to the cosines term in eq.(2.5), what is not right.
There is no negative normal loading according to the boundary conditions and there should not be an
antisymmetric point at ¢ = z/2, with zero load. This point should be a symmetry point and at ¢ = =,
there should not be a negative hydrostatic stress but a positive one, the same as applies at 6 = 0.
Clearly, the first order contributions: cos(d) and sin(d), in eq.(2.5) and eq.(2.6), have to be replaced by
the lower order contributions: cos(é) = 1- 6%/2 and: sin(d) = J as given by eq.(1°). This delivers the
right hydrostatic stress state at the crack tip 6 = 0. Similar remarks apply for the mode Il loading plot:
For the, pure shear S, loading case of the transformed Textbook equations, follows from eq.(2.14) to
(2.16), by the needed combination of two stresses of p=S at p = n/4 with p=- S at p = 3w/4, that:

(2r/c)” o, =Ssin(0/2)-(1-3sin*(0/2))

(2r/c)” o, =-3Ssin(6/2)cos*(012)
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(2r/c)”r,, =Scos(6/2)(3cos’ (0/2)-2)
The principal stresses are given by:

12
(2r / CSZ) o=-sin(6/2)+ O.5(l+ 0052(9))

Here, at 8 = 0, the necessary occurring hydrostatic stress solution is shown to be disappeared.

Thus the Textbook coordinate transformation is not right for shear stress loading.

The fact, that also, at pure shear loading, the hydrostatic stress state has to occur at the crack tip,
follows from the related exact equations in elliptical coordinates: eq.(9) to eq.(12) at the same loading,
by stresses p at p =n/4 and - p at B =3w/4. It then follows, that the stresses, in these equations, are:

o, = p(cosh(2§)—1)(a—az)sin(Zn) (p-22)
o, = p[az(cosh(25)—1)—a(cosh(2§)+1)]sin(277) (p.23)
T, = p[acos(zn)—az(l—cos(zn))]sinh(zg) (p.24)

where o = 1/[cosh(2&) - cos(2n)]. This delivers a hydrostatic stress state when: o: = oy, are equal

principal stresses, and thus when, necessarily, also: zs =0. For: o: = oy is:

(a—az)cosh(Zf)—a+a2 :—(oc—az)cosh(Zf)—oc2 -a—

N cosh(2§)=ilz1+lz1+2§2 (p.25)
- a
and for 7z =0s:
acos(2n)—a’ +a’cos(27)=0 — cos(27)= Ll ~1-1 ~1-2n (p.26)
a+ a

Thus ¢ and 7 are equal to 1/N(2a) = V(2r/c), thus very small, close to zero for sharp cracks, because a
is several orders higher than order one.

Substitution of eq.(p.25) and (p.26) into the appropriate stress equations (p.22) and (p.23), gives:

. Vi1+2a c
o.=0,=—pasin(2n)=-pa ~—pVJ2a =—p,[— 27
: =0, ==pasin(2)=-pa——=~-py P\ o (p-27)
because o = (c/4r) >> 1, where c is half the crack length. The third principal stress is:
o,=vo,+vo, =05(c, +0,)=0,.=0, (p.28)

Thus 3 equal stresses of full-hydrostatic behavior. The contraction coefficient is v = 0.5 of no volume
change. In the limit this hydrostatic stress state at pure shear loading, occurs at the same place and
magnitude as occurs at pure mode | loading. This therefore also applies for any load combination.

Applying the first row- expanded of: sin(8) =~ 5~ 0 and cos(3) = 1 — §%2 = 1, the equations become:
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mode I, B = /2 mode IL, (B = n/4) + (B = - n/4)
(8r/ (sz))uz o, =2sin’(B)=2 = 1 4+ 1 =2 (2.14)
(8r/ (sz))uz o, =2sin’(f)=2 = 1 o+ 1=2 (2.15)
(8r/(cp2))1/2 7,=sin(28)=0 = 1 + -1 =0 (2.16')
full-hydrostatic full-hydrostatic

This delivers the hydrostatic stress state at the crack tip for pure tension (mode I) and pure shear,
(mode I1). Thus delivers the hydrostatic state for any load combination. Thus, only the second terms of
equations (14) and (15), which are not zero at the top, when 8 = 0, count, and also the first term of
eq.(16), which is not zero for § = 0. The equations thus become:

Oy =0y =Ohygr — © = 7,5 =0 — K= pyac =K, =0y V271  for: Opygr = % and r— 0.

Correction of the Textbook equations lead to a full hydrostatic critical stress state for any load

combination.

The small value coordinate relations of the semi-symmetric coordinate system of fig. 2.2 are inserted
in the stress equations of the double symmetric coordinate system of Fig. 2.1, without applying the
transformation equations for this change of coordinate axes, because this is not needed. Because, close
to the crack tip, the hydrostatic stress state applies for fracture, no coordinate transformation equations
are needed because they are already satisfied, because 2 principal stresses are equal. Thus the
hydrostatic stress state is invariant.

This result applies for the chosen case of solid material and does not apply for the determining

open crack border & = &, for which the mathematical equations of fracture mechanics apply.

Thus the here corrected equations, which still lead to a wrong mode | stress intensity, should not

be applied in Textbooks.

Of interest for a right result is only the exact mixed mode failure criterion in transformed hydrostatic

stresses, discussed in the next section.

3. EXACT SOLUTION OF THE BOUNDARY VALUE PROBLEM OF THE
“MIXED I-1l MODE” FRACTURE CRITERION

The analysis of the boundary value problem of fracture mechanics of isotropic material is e.g.
discussed in ([3], & 8.9-10). An extension for orthotropic materials, like wood and reinforced

polymers, is derived in e.g. [8] and is discussed in [4]. The failure criterion depends on the actual

10
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ultimate full hydrostatic clear wood strength at the crack boundary, which is the highest loaded
material near the crack tip. As mentioned, the Airy stress function solution of [2], which appears to be
based on the exact solution of Inglis, is applied for estimation of the determining flat sharp crack
stresses. Before the introduction of the fully empirical critical energy approach, which is based on
non-existent mathematical and material properties, this was the general applied exact analysis of the
past, which is still applied in rock mechanics [3], and for wood (orthotropic materials) [7]. To repeat

the procedure: The mathematical solution of the Airy stress function equation:
V?(VU)=0 (3.1)

is given in terms of two analytic functions ¢(z) and x(z), (where z=x+iy), which satisfy the conditions

Figure 4.1. Elliptic hole and coordinates

at infinity and at the whole elliptic crack boundary surface, & = &, and show no discontinuity of

displacements, thus represent the solution:

U =R{7¢(2)+ 2(2)} =0.5{z¢(2) + 24 (2) + 7 (2)+ Z(2)} (3.2)
The analytical functions (complex potentials) are based on the infinite row solution of Inglis, of the
displacement differential equations. It appears, that all prescribed textbook equations: are based on the
stress potential functions eq.(3.3) and eq.(3.4) which are given in [3].

For the elliptic hole & = & with semi-axes: a = ¢ cosh(&) and b = ¢ sinh(&%) in an infinite region
loaded by an uniaxial stress p at infinity, inclined at f to the major axis Ox of the ellipse, (see Fig.

4.2), the functions ¢(z) and y’(z) = w(z) are, for the exact solution:

4¢(z)= pce*® cos(28)cosh(¢) + pe(1—e** 2/ )sinh () (3.3)
4y (z)=—pclcosh(2£,) - cos(28)+e**sinh (2(¢ - & —i3))lcosech(£) (3.4)
The tangential stress ot at the crack boundary &= & is simply: ot = 0, because there: o:= 0, as

boundary condition. Because the crack is empty there is no pressure and shear on the crack boundary

surface. Thus o= 0 and ot is:
o.+0,=2[¢'(2)+4'(2)|= 0,=2[4'(& +in)+4' (& ~in)|=

= pe’® cos(2/8) +0.5p(1-e**"*/ )coth(&, +in)+ 0.5 p(1-e** 7 )coth(&, —in) =
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= pe*® cos(23) + p[ cosh(2&,) —cos(277) | sinh(2¢,) +
—pe® [ cos(2/3)sinh (24, ) +sin(28)sin(277) ][ cosh(2&,) —cos(277) | =

) psinh(250)+cos(Zﬂ)—exp(%o)COS(Z(ﬂ—’7)) (3.5)

cosh(2&,)—cos(2n)

This eq.(3.5) can be extended by combining two stresses at infinity: p. inclined at # to Ox and p; at

n/2 + f3, making any loading combination (cy Txy) possible, according to:
o, = psin’(f)+ p,cos’(B), o, = p,cos’(B)+ p,sin*(B), r,, =—0.5(p, - p,)sin(23) (3.6)
giving:

_ 20, sinh(2&,)+ 27, [(L+sinh (24, )) cot (2 8) — exp(2¢; )cos(2( B — 1) )cosec(2 )]

o 3.7
' cosh(2&,)—cos(27) 3.7
For a flat, sharp crack, thus for small & and # (near the crack tip) this is:
Y 1,
G:\ - <z ‘/Gz
By o
4 1 8 ,I
7‘65“_—‘" X
- - GX
Gl
—
/g.z Tyy \
Figure 4.2. - Stresses in the notch plane Ox
2\¢,0, —nt
o, = M (3.8)
So +17
The determining maximal tangential stress follows from dot/dy = 0. Thus:
Tyy (6802 _772)+ 250,n=0 — n=¢ |:O'y + (0'5 +z’fy)}/z'xy . (3.9
Substitutions in eq.(3.8) gives:
&GO =0, =t (0'5 +z'xzy) (3.10)
This equation can be written:
2
(gﬁp‘t —Gy)z =(i (05 —I—rfy)) =(7§ +2'X2y e
2'2 O
sl ! 1 (3.11)

+ =
(é:OJt)Z &o 12

Transformation from elliptic to polar coordinates, by eq.(2.5):
g =4J2r/lc=\plc=blc (3.12)
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where b and c are half axes lengths and substitution in eq.(3.11) gives:

2
Gy‘/% n (TXV\/E) K, K|2|

O't\/”ro/2 (Jt,/Zm’O)Z Kic (Kuc)2

what is the mixed I-11 mode fracture criterion [4], [8], for isotropic material.

Notice that no critical energy criterium is possible or required to obtain K, K, ,K,K ..

Eq.(3.11), with constant &at, thus with always the same initial small crack length c, of clear wood, or
of timber, gives and explains, the uniaxial, thus ultimate stress, strength criterion for wood. Strength
theory and fracture mechanics are thus identical. In eq.(3.13) is the high value of i, due to the small
value of the crack tip radius r,, thus due to the strong curvature. This delivers the critical stress
intensity ot (ro)*2 as ultimate strength parameter, with an unlimited high linear elastic, full-hydrostatic
ultimate stress. Eq.(3.13). the 4" equation in Table I, is the only exact, (thus non-empirical), strength
equation that therefore, cannot be rejected by the lack of fit test of Table I.

Eq.(3.13) replaces eq.(3.14), which is the 5" equation of Table | and is wrongly regarded to be
fundamental e.g. in [6]-eq.2.36, but is rejected theoretically and empirically in Table I, as also applies
for all other empirical equations.
G KE L Ki, K (3.14)
E' E' 2u

Eq.(3.14) is based on a simple addition rule. Stated is, that the energy release rate, like energy, is a
scalar quantity and thus can be added. Forgotten is however, the necessity of equilibrium,

compatibility of stresses and strains and no discontinuity of displacements, etc. etc.

Table 1. - Lack of fit values for supposed failure criteria [9]

Failure criterion p-value
K, /K.=1 0.0001
K /K, +K, /K, =1 0.0001
K, /Ko +(K, /K, ) =1 0.5629
(K, 1K) +K, 1K, =1 0.0784
(K, 1K, ) +(K, /K, ) =1 0.0001
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4. CONCLUSIONS

- The underlined sentences represent the main conclusions about what is wrong with the near crack tip
analysis in Textbooks and how it is corrected.

- The exact equations in elliptical coordinates, show, that at any single or combined mode I and Il
loading case, a full-hydrostatic ultimate stress state occurs at the crack tip.

- Fundamental also is, that in the following basic regarded Textbook equations:

N27r I r—0

the limit does not exist because the product: 22 V(r) is independent of r.

Uij =

-- Because failure is always by the extremely high hydrostatic stresses, to break atomic bonds, this
should be replaced by:

K =o(zc)’? < lim (o - (21, 1 2)Y2) =K\, — Ky = (zc)? < lim (o3 - (271,)%) = K
1, —0, r,—0,

Ojj =>®© Gijj—©
-- By applying the two Maugis potentials is wrongly K,. = K,,. obtained in the general accepted

Textbook equations.
-- There should be no difference in strength theory and critical work theory.
-- Griffith did not intend to replace his strength theory by a critical energy theory. To hide the
existence of an higher order linear elastic stress at a singularity (far above plane plastic flow stress),
(which exists as full-hydrostatic stress), he reformulated his strength criterion into an apparent surface
energy concept, what was a strength criterion expressed in the necessary amount of work per unit
fractured surface formation. This thus is a constant material strength property, what later wrongly is
called critical elastic strain energy release rate, although linear elastic strain energy is not involved in
fracture itself but only provides displacement and stress compatibility with fracture movements. The
visible fracture modes thus represent these linear elastic compatibility displacements.

According to Griffith there thus is no difference between strength theory and right energy approach.
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